## The chromatographic separation of diastereoisomeric dipeptid es

Diastereoisomeric dipeptides and their derivatives have variable physical properties and therefore can be sometimes separated by crystallisation ${ }^{1-4}$, countercurrent distribution ${ }^{5}$, ion-exchange ${ }^{6}$, or gas chromatography ${ }^{7}$. Some authors report a difference of the paper chromatographic $R_{F}$ values for diastereoisomeric peptides ${ }^{2,8}$.

The present work reports a satisfactory separation of some diastereoisomeric dipeptides by ascending paper chromatography on Whatman paper No. r.

The simplest dipeptide containing two asymmetric carbon atoms can exist in four isomeric modifications: L-L, D-D, L-D, D-L. Several dipeptides of known configuration were obtained from L - and/or D -amino acids (see Table I). The values of $R_{F}$ for the L-L peptides were identical with those observed for the D-D compounds (since L-L is the mirror image of $\mathrm{D}-\mathrm{D}$ ) and differed markedly from those of the $\mathrm{L}-\mathrm{D}$ and $\mathrm{D}-\mathrm{L}$ isomers.

The best separation of diastereoisomers was obtained with the following basic solvent systems:

## TABLE I

the $R_{F}$ VALUES of diastereoisomers of dipeptides in relation to their configuration Solvents: $S_{1}=$ Ethyl acetate-pyridine-acetic acid-water (5:5:1:3). $S_{2}=$ Pyricline-water (4: I).
Paper: Whatman No. I (ascending), length 30 cm . Detection: Ninhydrin.

| Dipeplides | Configuration of component amino acids |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $R_{F}{ }^{\text {in }} S_{i}$ |  |  |  |  | $R_{F}$ in $S_{3}$ |  |  |  |  |
|  | DL-DL | 1-L | D.D | L-D | D-L | DL-Di | L-L | D-D | L-D | D.L |
| Ala-Ala | do not |  |  |  |  | 0.44 | 0.44 |  |  |  |
|  | separate |  |  |  |  | 3.3\% |  |  |  |  |
| Ala-But | 0.53 |  | 0.53 |  |  | 0.48 |  | 0.48 |  |  |
|  | 0.47 |  |  |  | 0.47 | 0.43 |  |  |  | 0.43 |
| Ala-Leu | 0.79 | 0.79 |  |  |  | 0.60 | 0.60 |  |  |  |
|  | 0.73 |  |  |  |  | 0.54 |  |  |  |  |
| Ala-Phe | 0.69 | 0.69 |  |  |  | 0.72 | 0.71 |  |  |  |
|  | 0.62 |  |  |  | 0.62 | 0.55 |  |  |  | 0.56 |
| Ala-Val | 0.60 | 0.60 |  |  |  | 0.73 | 0.73 |  |  |  |
|  | 0.54 |  |  |  | 0.54 | 0.50 |  |  |  | 0.51 |
| But-Ala | 0.58 |  |  |  |  | 0.68 |  |  |  |  |
|  | 0.51 |  |  |  | 0.50 | 0.51 |  |  |  | 0.51 |
| But-But | 0.68 |  |  |  |  | 0.73 |  |  |  |  |
|  | 0.59 |  |  |  | 0.59 | 0.51 |  |  |  | 0.51 |
| Glu-Asp | 0.29 | 0.28 |  |  |  |  |  |  |  |  |
|  | 0.23 |  |  |  |  |  |  |  |  |  |
| Glu-Glu | 0.41 | 0.10 |  |  |  |  |  |  |  |  |
|  | 0.34 |  |  |  |  |  |  |  |  |  |
| Phe-Ala | 0.70 | 0.70 |  |  |  | 0.73 |  |  |  |  |
|  | 0.58 |  |  | 0.58 |  | 0.60 |  |  | 0.60 |  |
| Phe-Val | 0.80 | 0.80 |  |  |  | 0.83 | 0.82 |  |  |  |
|  | 0.70 |  |  |  |  | 0.69 |  |  |  |  |
| Val-Len | 0.80 | 0.80 |  |  |  | 0.83 | 0.82 |  |  |  |
|  | 0.70 |  |  |  |  | 0.71 |  |  |  |  |
| Val-Phe | 0.86 | 0.86 |  |  |  | 0.80 | 0.80 |  |  |  |
|  | 0.78 |  |  |  |  | 0.71 |  |  |  |  |
| Val-Val | 0.83 | 0.83 |  |  |  | 0.80 | 0.80 |  |  |  |
|  | 0.72 |  |  |  |  | 0.71 |  |  |  |  |

$\mathrm{S}_{1}$ : Pyridine-ethyl acetate-acetic acid-water (5:5:1:3)
$\mathrm{S}_{2}$ : Pyridine-water (4:I)
The differences of the $R_{F}$ coefficients $\left(\Delta R_{F}\right)$ in these systems had the values 0.05-0.23.
The dipeptides synthesised from two racemic amino acids (a mixture of four diastereoisomers: L-L, L-D, D-D, D-L) were separated in these systems and gave two non-overlapping spots which corresponded to two racemates (L-L/D-D and L-D/D-L). The upper spot of the mixture of these racemates had the $R_{F}$ value corresponding to the L-L and $D-D$ isomers, the lower spot to the $\mathrm{L}-\mathrm{D}$ and $\mathrm{D}-\mathrm{L}$ isomers.

Relative amounts of diastereoisomers can be quantitatively determined according to Boissonnas ${ }^{9}$ with an accuracy of $2 \%$.

There is a regular dependence of the $R_{F}$ value of the dipeptides upon the relative configuration of the amino acids in all experiments:

$$
R_{F}(\mathrm{~L}-\mathrm{L} / \mathrm{D}-\mathrm{D})>R_{F}(\mathrm{~L}-\mathrm{D} / \mathrm{D}-\mathrm{L})
$$

Similar regularities are observed in the paper chromatography of hydroxy-amino acids with two asymmetric centres; crythro-isomers of phenylserine ${ }^{10}$ or threonine ${ }^{11}$ travel more quickly than the threo-isomers.

Depariment of General Chemistry,
Teresa Sorozowska
Institute of Technology, Gdanisk (Poland)

1 W. J. Polglase and E. L. Smith, J. Am. Chem. Soc., 71 (1949) 308 r.
${ }^{2}$ J. W. Hinman, e. L. Caron and H. N. Christensen, J. Am. Chem. Soc., 72 (r950) 1620.
3 E. Schnabel and H. Zahn, Anno, 614 (1958) I4r.
4 E. Taschner, T. Somozowsika, J. F. Biernat, A. Chimiak, Cz. Wasielewsiki and B. Rzeszotarsiks, Ann., 663 (1963) 197.
5 R. B. Merrifield and D. W. Wooley, J. Am. Chem. Soc., 78 (1956) 4646;
D. W. Clayton, J. A. Farrington, G. W. Kenner and J. M. Turner, J. Chem. Soc., (1957) 1398.
${ }^{6}$ S. Yanart, J. Biol. Chem., 220 (1956) 683;
F. C. Neuhaus, J. Biol. Chem., 237 (1962) 778.

7 F. Weygand, A. Prox, L. Schmidhammer and W. König, Angere. Chem., 75 (1963) 282.
8 H. Sachs and E. Brand, J. Am. Chem. Soc., 76 (1954) 181 if
H. Kihara, M. Ikawa nnd E. E. Snell, J. Biol. Chem., 236 (igGi) r72;
B. Riniler and R. Schwyzer, Helv. Chim. Acta, 44 (196i) 658;
P. M. Hardy, G. W. Kenner and R. C. Sheppard, Tetrahedron, 19 (1963) 95.
${ }^{0}$ R. A. Roissonnas, Hely. Chim. Acta, 33 (1950) 1975.
10 W. Drell, J. Am. Chem. Soc., 77 (1955) 5429.
${ }^{11}$ K. N. F. Shaw and S. W. Fox, J. Am. Chem. Soc., 75 (1953) 342 I.
Received July I5th, 1963

